I’m interested in exploring flow cytometry data from a single-cell perspective. After all it is a very high throughput method that can measure a modest amount of variables in each single cell.
I decided to use the FlowCytometryTools
Python library just to see what I could extract from those magic fcs files and how feature complete the library is.
I made the following Jupyter notebook:
Demo of exploring flow cytometry data with the FlowCytometryTools library
156157
[(u'P13MS', u'350'),
(u'$ETIM', u'13:21:42'),
(u'P8DISPLAY', u'LOG'),
(u'FSC ASF', u'0.74'),
(u'CYTNUM', u'1'),
(u'$ENDDATA', u'9998405 '),
(u'P2DISPLAY', u'LIN'),
(u'$ENDSTEXT', u'0'),
(u'LASER2NAME', u'Red')]
(u'FSC-A',
u'FSC-H',
u'FSC-W',
u'SSC-A',
u'SSC-H',
u'SSC-W',
u'B/E Alexa Fluor 488-A',
u'B/C PE-TexasRed-A',
u'B/B PerCP-Cy5-5-A',
u'YG/A PE-Cy7-A',
u'R/C APC-A',
u'R/B Alexa Fluor 700-A',
u'R/A APC-Cy7-A',
u'V/C Pacific Blue-A',
u'YG/E PE-A',
u'Time')
$PnN | $PnB | $PnG | $PnE | $PnR | $PnV | |
---|---|---|---|---|---|---|
Channel Number | ||||||
1 | FSC-A | 32 | 1.0 | [0, 0] | 262144 | 244 |
2 | FSC-H | 32 | 1.0 | [0, 0] | 262144 | 244 |
3 | FSC-W | 32 | 1.0 | [0, 0] | 262144 | 244 |
4 | SSC-A | 32 | 1.0 | [0, 0] | 262144 | 276 |
5 | SSC-H | 32 | 1.0 | [0, 0] | 262144 | 276 |
6 | SSC-W | 32 | 1.0 | [0, 0] | 262144 | 276 |
7 | B/E Alexa Fluor 488-A | 32 | 1.0 | [0, 0] | 262144 | 469 |
8 | B/C PE-TexasRed-A | 32 | 1.0 | [0, 0] | 262144 | 450 |
9 | B/B PerCP-Cy5-5-A | 32 | 1.0 | [0, 0] | 262144 | 462 |
10 | YG/A PE-Cy7-A | 32 | 1.0 | [0, 0] | 262144 | 458 |
11 | R/C APC-A | 32 | 1.0 | [0, 0] | 262144 | 586 |
12 | R/B Alexa Fluor 700-A | 32 | 1.0 | [0, 0] | 262144 | 560 |
13 | R/A APC-Cy7-A | 32 | 1.0 | [0, 0] | 262144 | 618 |
14 | V/C Pacific Blue-A | 32 | 1.0 | [0, 0] | 262144 | 385 |
15 | YG/E PE-A | 32 | 1.0 | [0, 0] | 262144 | 443 |
16 | Time | 32 | 0.01 | [0, 0] | 262144 | None |
FSC-A | SSC-A | |
---|---|---|
0 | 53618.921875 | 42435.988281 |
1 | 100054.664062 | 33288.808594 |
2 | 60825.039062 | 35168.011719 |
3 | 58227.640625 | 37189.890625 |
4 | 67312.617188 | 39781.621094 |
5 | 92615.437500 | 73334.914062 |
6 | 51280.519531 | 33090.449219 |
7 | 43725.859375 | 36683.550781 |
8 | 62111.902344 | 22713.960938 |
9 | 84667.843750 | 33091.320312 |
FSC-A | FSC-H | FSC-W | SSC-A | SSC-H | SSC-W | B/E Alexa Fluor 488-A | B/C PE-TexasRed-A | B/B PerCP-Cy5-5-A | YG/A PE-Cy7-A | R/C APC-A | R/B Alexa Fluor 700-A | R/A APC-Cy7-A | V/C Pacific Blue-A | YG/E PE-A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 53618.921875 | 46566.0 | 75462.132812 | 42435.988281 | 40018.0 | 69495.859375 | 66.989998 | 59.160000 | 36.540001 | 5453.760254 | 2175.400146 | 624.150024 | 329.960022 | 9.130000 | 156.400009 |
1 | 100054.664062 | 90369.0 | 72560.093750 | 33288.808594 | 32241.0 | 67665.867188 | 62.639999 | 215.759995 | 97.440002 | 2553.920166 | 2539.670166 | 579.619995 | 252.580002 | 14.940000 | 720.359985 |
2 | 60825.039062 | 53044.0 | 75149.492188 | 35168.011719 | 33952.0 | 67883.210938 | 90.480003 | 125.279999 | 28.710001 | 6724.280273 | 1590.670044 | 669.410034 | 292.000000 | 6.640000 | 291.640015 |
3 | 58227.640625 | 50084.0 | 76192.140625 | 37189.890625 | 35568.0 | 68524.421875 | 69.599998 | 334.950012 | 139.199997 | 2679.040039 | 1762.950073 | 458.440002 | 202.210007 | 9.960000 | 917.239990 |
4 | 67312.617188 | 57849.0 | 76257.140625 | 39781.621094 | 38333.0 | 68012.632812 | 77.430000 | 192.270004 | 100.919998 | 4035.120117 | 1524.970093 | 475.230011 | 239.440002 | 9.960000 | 608.119995 |
5 | 92615.437500 | 72473.0 | 83750.437500 | 73334.914062 | 66461.0 | 72314.242188 | 120.059998 | 2424.689941 | 2306.370117 | 253.919998 | 237.980011 | 241.630005 | 66.430000 | 34.029999 | 6612.040039 |
6 | 51280.519531 | 44760.0 | 75083.117188 | 33090.449219 | 31656.0 | 68505.679688 | 86.129997 | 57.420002 | 32.189999 | 2461.920166 | 1025.650024 | 365.000000 | 151.839996 | 43.989998 | 80.040001 |
7 | 43725.859375 | 38597.0 | 74244.570312 | 36683.550781 | 35153.0 | 68389.421875 | 153.990005 | 202.710007 | 163.559998 | 2104.040039 | 1400.140015 | 401.500000 | 234.330002 | 191.729996 | 734.160034 |
8 | 62111.902344 | 55068.0 | 73918.890625 | 22713.960938 | 21820.0 | 68221.000000 | 73.080002 | 46.110001 | 81.779999 | 4808.839844 | 1565.119995 | 646.049988 | 348.940002 | 12.450000 | 123.279999 |
9 | 84667.843750 | 75601.0 | 73395.750000 | 33091.320312 | 32645.0 | 66432.007812 | 31.320000 | 15.660000 | 13.050000 | 3248.520020 | 1015.430054 | 360.619995 | 141.620010 | 6.640000 | 75.440002 |
<seaborn.axisgrid.JointGrid at 0x7f334e8f0b50>